Structural damage in the C. elegans epidermis causes release of STA-2 and induction of an innate immune response.
نویسندگان
چکیده
The epidermis constantly encounters invasions that disrupt its architecture, yet whether the epidermal immune system utilizes damaged structures as danger signals to activate self-defense is unclear. Here, we used a C. elegans epidermis model in which skin-penetrating infection or injury activates immune defense and antimicrobial peptide (AMP) production. By systemically disrupting each architectural component, we found that only disturbance of the apical hemidesmosomes triggered an immune response and robust AMP expression. The epidermis recognized structural damage through hemidesmosomes associated with a STAT-like protein, whose disruption led to detachment of STA-2 molecules from hemidesmosomes and transcription of AMPs. This machinery enabled the epidermis to bypass certain signaling amplification and directly trigger AMP production when subjected to extensive architectural damage. Together, our findings uncover an evolutionarily conserved mechanism for the epithelial barriers to detect danger and activate immune defense.
منابع مشابه
A Gαq-Ca2+ Signaling Pathway Promotes Actin-Mediated Epidermal Wound Closure in C. elegans
BACKGROUND Repair of skin wounds is essential for animals to survive in a harsh environment, yet the signaling pathways initiating wound repair in vivo remain little understood. In Caenorhabditis elegans, a p38 mitogen-activated protein kinase (MAPK) cascade promotes innate immune responses to wounding but is not required for other aspects of wound healing. We therefore set out to identify addi...
متن کاملDistinct Innate Immune Responses to Infection and Wounding in the C. elegans Epidermis
BACKGROUND In many animals, the epidermis is in permanent contact with the environment and represents a first line of defense against pathogens and injury. Infection of the nematode Caenorhabditis elegans by the natural fungal pathogen Drechmeria coniospora induces the expression in the epidermis of antimicrobial peptide (AMP) genes such as nlp-29. Here, we tested the hypothesis that injury mig...
متن کاملThe wounded worm
The ability to heal wounds is an ancient and conserved function of epidermal epithelial layers. The importance of skin wound healing to human life and biology has long been evident, however many of the molecular mechanisms underlying wound repair remain little understood. In the past several years, analysis of the C. elegans innate immune response to fungal infection of the epidermis has led to...
متن کاملAn Alternative STAT Signaling Pathway Acts in Viral Immunity in Caenorhabditis elegans
Across metazoans, innate immunity is vital in defending organisms against viral infection. In mammals, antiviral innate immunity is orchestrated by interferon signaling, activating the STAT transcription factors downstream of the JAK kinases to induce expression of antiviral effector genes. In the nematode Caenorhabditis elegans, which lacks the interferon system, the major antiviral response s...
متن کاملInnate immunity in C. elegans.
The nematode Caenorhabditis elegans is proving to be a powerful invertebrate model to study host-pathogen interactions. In common with other invertebrates, C. elegans relies solely on its innate immune system to defend itself against pathogens. Studies of the nematode response to infection with various fungal and bacterial pathogens have revealed that the innate immune system of C. elegans empl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Immunity
دوره 42 2 شماره
صفحات -
تاریخ انتشار 2015